High throughput synthesis of uniform biocompatible polymer beads with high quantum dot loading using microfluidic jet-mode breakup.
نویسندگان
چکیده
Uniform polymer microbeads with highly loaded quantum dots (QDs) are produced using high-throughput coherent jet breakup of a biocompatible poly(ethylene glycol) diacrylate (PEGDA) prepolymer resin, followed by in-line photopolymerization. A spiraling and gradually widening channel enables maximum absorption of radiated UV light for the in-line photopolymerization without coalescence and clogging issues. Although the dripping mode in general provides superior uniformity to the jet mode, our nozzle design with tapered geometry brings controlled jet breakup leading to 3% of uniform particle size distribution, comparable to dripping-mode performance. We achieve a maximum production rate of 2.32 kHz, 38 times faster than the dripping mode, at a same polymer flow rate. In addition, the jet-mode scheme provides better versatility with 3 times wider range of size control as well as the compatibility with viscous fluids that could cause pressure buildup in the microsystem. As a demonstration, a QD-doped prepolymer resin is introduced to create uniform biocompatible polymer beads with 10 wt % CdSe/ZnSe QD loading. In spite of this high loading, the resulting polymer beads exhibits narrow bandwidth of 28 nm to be used for the ultrasensitive bioimaging, optical coding, and sensing sufficiently with single bead.
منابع مشابه
Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells
Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...
متن کاملSynthesis of CdTe quantum dots coated with biocompatible materials and investigation of their identification Properties
Fingerprint identification or dactyloscopy is a method for human identification. The impressions left by a human finger on surfaces are not visible to naked eyes (latent fingerprint); therefore, they require revelation to become visible and identified. Within the last century, several fingerprint revelation techniques such as optical, physical, and chemical were studied. These traditional metho...
متن کاملHigh-throughput Patterning of Single Magnetic Beads Using Digital Microfluidic Technology
We present a novel strategy for patterning single magnetic beads by using digital microfluidics (DMF). A droplet containing a suspension of superparamagnetic particles is transported back and forth over an array of femtoliter-sized microwells by using electrowetting-on-dielectric actuation forces. Compared to existing methods, this technique allows patterning of superparamagnetic beads in micro...
متن کاملAll-polymer microfluidic particle size sorter for biomedical applications
The design and method for the production of an all-polymer microfluidic particle sorter, for use in biomedical applications, is described. The sorter is made from biocompatible materials with properties, such as high optical transparency, that make it useful in a biological laboratory. The method of sorting is designed to be gentle on biological species, using a method of guiding the particles ...
متن کاملA novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 30 8 شماره
صفحات -
تاریخ انتشار 2014